lunes, 21 de noviembre de 2016

5.10 FUERZAS FUNDAMENTALES DE LA NATURALEZA. APLICACIÓN.

FUERZA DE GRAVITATORIA

Si bien es cierto ya conocemos que la fuerza gravitatoria es la fuerza con que la tierra atrae los objetos asía su centro terrestre también podemos encontrar según Montiel (2011) que también:
 Es la fuerza de atracción que una porción de materia ejerce sobre otra, y afecta a todos los cuerpos. Su intensidad es mínima entre las partículas que intervienen en los procesos atómicos, pero es esencial a gran escala porque su alcance es infinito, aunque decrece de forma inversamente proporcional al cuadrado de la distancia, según la ley de Newton. Su importancia reside en que siempre es atractiva y, por tanto, se acumula, aumentando con el número de partículas en juego. De este modo, la gravitación es la fuerza preponderante a escala macroscópica, a pesar de que se trata de la más débil de todas las interacciones. Es la responsable de la atracción universal entre los cuerpos, de la cohesión de los astros (planetas, estrellas, satélites...) y regula sus movimientos. Podemos afirmar que es la fuerza que mantiene el orden y el equilibrio en el universo y la que provoca, al mismo tiempo, la colisión entre galaxias vecinas y la creación de nuevas estrellas. 
En 1915, Einstein, tras desarrollar su teoría especial de la relatividad, sugirió que la gravedad no era una fuerza como las otras, sino una consecuencia de la deformación del espacio-tiempo por la presencia de masa (o energía, que es lo mismo), formulando su teoría general de la relatividad. Entonces, cuerpos como la Tierra no se mueven en órbitas cerradas porque haya una fuerza llamada gravedad, sino que describen trayectorias parecidas a líneas rectas, pero en un espacio-tiempo que se encuentra deformado por la presencia del Sol.
Con todo, Einstein propone una teoría clásica, ya que no introduce los conceptos cuánticos que describen el mundo microscópico. Los intentos realizados por cuantizar la interacción gravitatoria implican la existencia de un bosón mediador de la interacción, el gravitón, de masa nula y número cuántico de espín 2, que no ha podido ser detectado aún. Dicha partícula virtual sería la intercambiada entre las partículas subatómicas (o fermiones) que se ven afectadas por la gravedad en un instante dado”.

FUERZA ELECTROMAGNÉTICA

La fuerza electromagnética es una de las fuerzas fundamentales de la naturaleza. Según (Hernández, 2011) es en este tipo de fuerza donde se lleva a cabo la participación de cargas de repulsión y atracción, las cuales hacen que exista un flujo de electrones. Se da de la combinación de la fuerza eléctrica y fuerza magnética. La fuerza, que se realiza a través de fotones, es responsable del mantenimiento de los electrones y los protones en un átomo, y manteniendo unidos a los átomos de una molécula.
Imagen 1.Fuerza Electromagnética
Los fotones y fotones virtuales son el mensajero partículas de una fuerza electromagnética. Al no tener masa y, así como la posibilidad de viajar a la velocidad de la luz, los fotones son capaces de llevar a la fuerza y atraer a los electrones y los protones juntos. En lugar de empujar o tirar de las partículas con la fuerza electromagnética que transporta, el fotón portadoras de fuerza realmente cambia el carácter de las partículas, con lo que la creación de átomos y moléculas.
En el siglo XIX, en 1819 Hans Christian Oersted descubre la relación entre los fenómenos magnéticos y eléctricos. Otros científicos, como Ampere, inspirado por el descubrimiento de Oersted, inicia sus investigaciones llegando a desarrollar una teoría bastante fundamentada sobre el electromagnetismo.
En los últimos 100 años han surgido numerosas aplicaciones del electromagnetismo y de los materiales magnéticos. El electroimán, por ejemplo, es la base del motor eléctrico. Los electroimanes y solenoides tienen un gran uso en la industria y la tecnología: relés, motores, generadores, transformadores, altavoces, micrófonos, etc. El siguiente enlace brinda más información sobre este tipo de fuerza
Los materiales magnéticos también son componentes importantes de las cintas y discos para almacenar datos. Los imanes grandes y potentes son cruciales en muchas tecnologías modernas. Los trenes de levitación magnética utilizan poderosos electroimanes para elevarse por encima de los rieles y evitar el rozamiento. En la exploración mediante resonancia magnética nuclear, una importante herramienta de diagnóstico empleada en medicina, se utilizan campos magnéticos de gran intensidad. Los imanes superconductores se emplean en los aceleradores de partículas más potentes para mantener las partículas aceleradas en una trayectoria curva y enfocarlas (Buenas Tareas, 2010).
Imagen 2. Aplicaciones de fuerza electromagnética

No hay comentarios:

Publicar un comentario